A CERTAIN TWISTED JACQUET MODULE OF GL(6) OVER A FINITE FIELD: THE RANK 2 CASE

KUMAR BALASUBRAMANIAN* AND HIMANSHI KHURANA

Abstract

Let F be a finite field and $G=\mathrm{GL}(6, F)$. In this paper, we explicitly describe the structure of the twisted Jacquet module $\pi_{N, \psi_{A}}$ where A is a rank 2 matrix and π is an irreducible cuspidal representation of G.

1. Introduction

Let F be a finite field and $G=\mathrm{GL}(2 n, F)$. Let $P=M N$ be the standard maximal parabolic subgroup of G corresponding to the partition (n, n). We fix a non-trivial character ψ_{0} of F. It is easy to see that any character ψ of $N \simeq M(n, F)$ is of the form $\psi=\psi_{A}$, where $\psi_{A}(X)=\psi_{0}(\operatorname{Tr}(A X))$. The group $\operatorname{GL}(n, F) \times$ $\mathrm{GL}(n, F)$ acts on the set of characters of $\mathrm{M}(n, F)$ via,

$$
\left(g_{1}, g_{2}\right) \cdot \psi_{A}=\psi_{g_{2}^{-1} A g_{1}}
$$

and the set of characters of $\mathrm{M}(n, F)$ decomposes into disjoint orbits with respect to the above action. For $0 \leq i \leq n$, we let

$$
A_{i}=\left[\begin{array}{cc}
I_{i} & 0 \\
0 & 0
\end{array}\right] \in \mathrm{M}(n, F)
$$

where I_{i} is the identity matrix in $\mathrm{GL}(i, F)$. The matrices $A_{i}, 0 \leq i \leq n$ form a set of representatives for the orbits under the above action. When $i=n$, the character $\psi_{A_{n}}$ is a representative for the orbit of the non-degenerate characters of $\mathrm{M}(n, F)$.

Let π be an irreducible cuspidal representation of GL $(2 n, F)$. In [5], Prasad explicitly described the structure of $\pi_{N, \psi_{A_{n}}}$ as a module for $M_{\psi_{A_{n}}}$. In [1], we described the structure of $\pi_{N, \psi_{A_{1}}}$ as an $M_{\psi_{A_{1}}}$ module. The structure of $\pi_{N, \psi_{A_{k}}}$ as an $M_{\psi_{A_{k}}}$ module for $1<k<n$ is still not known. This motivates the problem studied in this paper. We hope that understanding the structure of $\pi_{N, \psi_{A}}$, when $A=A_{2} \in \mathrm{M}(3, F)$ and π is an irreducible cuspidal representation of $\mathrm{GL}(6, F)$ will help us gain some insight towards the general case. In this paper, we explicitly describe the structure of the twisted Jacquet module $\pi_{N, \psi_{A}}$ of an irreducible cuspidal representation π of $\mathrm{GL}(6, F)$ when $A=A_{2} \in \mathrm{M}(3, F)$.

Before we state our result, we set up some notation. Let $G=\mathrm{GL}(6, F)$ and P be the maximal parabolic subgroup of G with Levi decomposition $P=M N$, where $M \simeq \operatorname{GL}(3, F) \times \mathrm{GL}(3, F)$ and $N \simeq \mathrm{M}(3, F)$. We write F_{6} for the unique field extension of F of degree 6 . Let ψ_{0} be a fixed non-trivial additive character of F. Let

$$
A=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

2020 Mathematics Subject Classification. Primary: 20G40.
Key words and phrases. Cuspidal representations, Twisted Jacquet module.

* indicates corresponding author.
and $\psi_{A}: N \rightarrow \mathbb{C}^{\times}$be the character of N given by

$$
\psi_{A}\left(\left[\begin{array}{cc}
1 & X \\
0 & 1
\end{array}\right]\right)=\psi_{0}(\operatorname{Tr}(A X))
$$

Let $U_{A} \simeq F^{2} \oplus F^{2}$ and $H_{A}=U_{A} \rtimes\left(F^{\times} \times \mathrm{GL}(2, F)\right)$. Let ψ_{1} be the character of U_{A} given by

$$
\psi_{1}(Y, Z)=\psi_{0}(x+v)
$$

and ψ_{2} be the character of U_{A} given by

$$
\psi_{2}(Y, Z)=\psi_{0}(x+u),
$$

where $Y=\left[\begin{array}{l}x \\ y\end{array}\right]$ and $Z=\left[\begin{array}{l}u \\ v\end{array}\right]$. We write Mir for the Mirabolic subgroup of GL $(2, F)$ and reg for the regular representation.

Theorem 1.1. Let θ be a regular character of $F_{6}{ }^{\times}$and $\pi=\pi_{\theta}$ be an irreducible cuspidal representation of $\operatorname{GL}(6, F)$. Then,

$$
\left.\pi_{N, \psi_{A}} \simeq \theta\right|_{F \times} \otimes\left[q \operatorname{Ind}_{U_{A} \rtimes F^{\times}}^{H_{A}}\left(\widetilde{\psi_{1}} \otimes \overline{\operatorname{reg}\left(F^{\times}\right)}\right) \oplus \operatorname{Ind}_{U_{A} \rtimes M i r}^{H_{A}}\left(\widetilde{\psi_{2}} \otimes \overline{\operatorname{reg}(\operatorname{Mir})}\right)\right]
$$

2. Preliminaries

In this section, we record some preliminaries that we need.
2.1. Character of a cuspidal representation. Let F be the finite field of order q and $G=\mathrm{GL}(m, F)$. Let F_{m} be the unique field extension of F of degree m. A character θ of F_{m}^{\times}is called a "regular" character, if under the action of the Galois group of F_{m} over F, θ gives rise to m distinct characters of F_{m}^{\times}. It is a well known fact that the cuspidal representations of $\mathrm{GL}(m, F)$ are parametrized by the regular characters of F_{m}^{\times}. To avoid introducing more notation, we mention below only the relevant statements on computing the character values that we have used. We refer the reader to Section 6 in [4] for more precise statements on computing character values.

Theorem 2.1. Let θ be a regular character of F_{m}^{\times}. Let $\pi=\pi_{\theta}$ be an irreducible cuspidal representation of $\mathrm{GL}(m, F)$ associated to θ. Let Θ_{π} be its character. If $g \in \mathrm{GL}(m, F)$ is such that the characteristic polynomial of g is not a power of a polynomial irreducible over F. Then, we have

$$
\Theta_{\pi}(g)=0
$$

Theorem 2.2. Let θ be a regular character of F_{m}^{\times}. Let $\pi=\pi_{\theta}$ be an irreducible cuspidal representation of $\mathrm{GL}(m, F)$ associated to θ. Let Θ_{π} be its character. Suppose that $g=s . u$ is the Jordan decomposition of an element g in $\operatorname{GL}(m, F)$. If $\Theta_{\pi}(g) \neq 0$, then the semisimple element s must come from F_{m}^{\times}. Suppose that s comes from F_{m}^{\times}. Let z be an eigenvalue of s in F_{m} and let t be the dimension of the kernel of $g-z$ over F_{m}. Then

$$
\Theta_{\pi}(g)=(-1)^{m-1}\left[\sum_{\alpha=0}^{d-1} \theta\left(z^{q^{\alpha}}\right)\right]\left(1-q^{d}\right)\left(1-\left(q^{d}\right)^{2}\right) \ldots\left(1-\left(q^{d}\right)^{t-1}\right)
$$

where q^{d} is the cardinality of the field generated by z over F, and the summation is over the distinct Galois conjugates of z.

See Theorem 2 in [5] for this version.
2.2. Twisted Jacquet module. In this section, we recall the character and the dimension formula of the twisted Jacquet module of a representation π.

Let $G=\operatorname{GL}(k, F)$ and $P=M N$ be a parabolic subgroup of G. Let ψ be a character of N. For $m \in M$, let ψ^{m} be the character of N defined by $\psi^{m}(n)=$ $\psi\left(m n m^{-1}\right)$. Let

$$
V(N, \psi)=\operatorname{Span}_{\mathbb{C}}\{\pi(n) v-\psi(n) v \mid n \in N, v \in V\}
$$

and

$$
M_{\psi}=\left\{m \in M \mid \psi^{m}(n)=\psi(n), \forall n \in N\right\} .
$$

Clearly, M_{ψ} is a subgroup of M and it is easy to see that $V(N, \psi)$ is an M_{ψ}-invariant subspace of V. Hence, we get a representation $\left(\pi_{N, \psi}, V / V(N, \psi)\right)$ of M_{ψ}. We call $\left(\pi_{N, \psi}, V / V(N, \psi)\right)$ the twisted Jacquet module of π with respect to ψ. We write $\Theta_{N, \psi}$ for the character of $\pi_{N, \psi}$.
Proposition 2.3. Let (π, V) be a representation of $\mathrm{GL}(k, F)$ and Θ_{π} be the character of π. We have

$$
\Theta_{N, \psi}(m)=\frac{1}{|N|} \sum_{n \in N} \Theta_{\pi}(m n) \overline{\psi(n)}
$$

Remark 2.4. Taking $m=1$, we get the dimension of $\pi_{N, \psi}$. To be precise, we have

$$
\operatorname{dim}_{\mathbb{C}}\left(\pi_{N, \psi}\right)=\frac{1}{|N|} \sum_{n \in N} \Theta_{\pi}(n) \overline{\psi(n)}
$$

2.3. Representations of semidirect product of groups. In this section, we recall some results about constructing representations of a semidirect product of groups.

Let G be a finite group and $N \unlhd G$ be a normal subgroup of G. We write \widehat{N} for the set of irreducible representations of N upto equivalence. For $\sigma \in \widehat{N}$ and $g \in G$, we let

$$
I_{G}(\sigma)=\left\{\left.g \in G\right|^{g} \sigma \simeq \sigma\right\}
$$

for the inertia subgroup of $\sigma \in \widehat{N}$. For H a subgroup of G and $\sigma \in \widehat{H}$, an extension of σ to G is a representation $\widetilde{\sigma} \in \widehat{G}$ such that $\operatorname{Res}_{H}^{G} \widetilde{\sigma}=\sigma$.
Theorem 2.5. Suppose that G is a finite group and let $N \unlhd G$ be a normal subgroup. Suppose that any $\sigma \in \widehat{N}$ has an extension $\widetilde{\sigma}$ to its inertia subgroup $I_{G}(\sigma)$. In \widehat{N}, define an equivalence relation \approx by setting $\sigma_{1} \approx \sigma_{2}$ if there exists $g \in G$ such that ${ }^{g} \sigma_{1} \simeq \sigma_{2}$. Let Σ be a set of representatives of the corresponding quotient space \widehat{N} / \approx. For $\psi \in \widehat{I_{G}(\sigma) / N}$, denote by $\bar{\psi} \in \widehat{I_{G}(\sigma)}$, its inflation to $I_{G}(\sigma)$. Then

$$
\widehat{G}=\left\{\operatorname{Ind}_{I_{G}(\sigma)}^{G}(\widetilde{\sigma} \otimes \bar{\psi}): \sigma \in \Sigma, \psi \in \widehat{I_{G}(\sigma) / N}\right\}
$$

that is, the above is the list of all irreducible G-representations and, for different values of σ and ψ, we obtain inequivalent representations.

In the case when N is abelian, Theorem 2.5 above can be restated as follows.
Theorem 2.6. Suppose that $G=N \rtimes H$ with N abelian. Given $\chi \in \widehat{N}$, its inertia group $I_{G}(\chi)$ coincides with $N \rtimes H_{\chi}$, where

$$
H_{\chi}=\left\{\left.h \in H\right|^{h} \chi \simeq \chi\right\} .
$$

Then any $\chi \in \widehat{N}$ may be extended to a one dimensional representation $\widetilde{\chi} \in \widehat{N \rtimes H_{\chi}}$ by setting

$$
\widetilde{\chi}(n h)=\chi(n), \quad \forall n \in N, h \in H_{\chi}
$$

Moreover, with the notation of Theorem 2.5, we have

$$
\widehat{G}=\left\{\operatorname{Ind}_{N \rtimes H_{\chi}}^{G}(\widetilde{\chi} \otimes \bar{\psi}) \mid \chi \in \Sigma, \psi \in \widehat{H_{\chi}}\right\} .
$$

We refer the reader to Section 5 in [3] for more details.

3. Dimension of the Twisted Jacquet Module

In this section, we compute the dimension of the twisted Jacquet module $\pi_{N, \psi_{A}}$, where

$$
A=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] \in \mathrm{M}(3, F)
$$

is a rank 2 matrix.
Theorem 3.1. Let θ be a regular character of $F_{6}{ }^{\times}$and $\pi=\pi_{\theta}$ be an irreducible cuspidal representation of $\mathrm{GL}(6, F)$. We have

$$
\operatorname{dim}_{\mathbb{C}}\left(\pi_{N, \psi_{A}}\right)=q(q-1)\left(q^{2}-1\right)^{2}
$$

Proof. For $0 \leq i \leq 3$, let $\pi[i]$ be the sum of all characters of N inside π which lie in the orbit of the character $\psi_{A_{i}}$ under the action of $\operatorname{GL}(n, F) \times \operatorname{GL}(n, F)$. Then,

$$
\operatorname{dim}_{\mathbb{C}}\left(\left.\pi\right|_{N}\right)=\operatorname{dim}_{\mathbb{C}}(\pi[0])+\operatorname{dim}_{\mathbb{C}}(\pi[1])+\operatorname{dim}_{\mathbb{C}}(\pi[2])+\operatorname{dim}_{\mathbb{C}}(\pi[3])
$$

Since π is cuspidal, we have $\operatorname{dim}_{\mathbb{C}}(\pi[0])=0$. From Theorem 3.3 in [2] and Section 5 in [5], it follows that

$$
\begin{aligned}
\operatorname{dim}_{\mathbb{C}}(\pi[1]) & =(q-1)^{2}\left(q^{2}-1\right)^{2}|\mathrm{M}(3,3,1, q)| \\
& =(q-1)\left(q^{2}-1\right)^{2}\left(q^{3}-1\right)^{2}
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{dim}_{\mathbb{C}}(\pi[3]) & =\left(q^{3}-q\right)\left(q^{3}-q^{2}\right)|\mathrm{M}(3,3,3, q)| \\
& =\left(q^{3}-1\right)\left(q^{3}-q\right)^{2}\left(q^{3}-q^{2}\right)^{2}
\end{aligned}
$$

Using the fact that

$$
\operatorname{dim}_{\mathbb{C}}\left(\left.\pi\right|_{N}\right)=\left(q^{5}-1\right)\left(q^{4}-1\right)\left(q^{3}-1\right)\left(q^{2}-1\right)(q-1)
$$

we have,

$$
\operatorname{dim}_{\mathbb{C}}(\pi[2])=q^{2}\left(q^{2}-1\right)^{3}(q-1)^{2}\left(q^{2}+q+1\right)^{2}
$$

Since

$$
\operatorname{dim}_{\mathbb{C}}\left(\pi_{N, \psi_{A_{2}}}\right)=\operatorname{dim}_{\mathbb{C}}\left(\pi_{N, \psi_{A}}\right)
$$

it follows that

$$
\operatorname{dim}_{\mathbb{C}}\left(\pi_{N, \psi_{A}}\right)=q(q-1)\left(q^{2}-1\right)^{2}
$$

4. Structure of $M_{\psi_{A}}$

Let ψ_{A} be the character of $\mathrm{M}(n, F)$ given by

$$
\psi_{A}(X)=\psi_{0}(\operatorname{Tr}(A X))
$$

where

$$
A=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

We let $w_{0}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$. In this section, we calculate the normalizer $M_{\psi_{A}}$ of ψ_{A}.

Lemma 4.1. Let $M_{\psi_{A}}=\left\{m \in M \mid \psi_{A}^{m}(n)=\psi_{A}(n), \forall n \in N\right\}$. Then we have

$$
M_{\psi_{A}}=\left\{\left.\left[\begin{array}{cccc}
a & X & & \\
0 & g & & \\
& & g^{\prime} & Y \\
& & 0 & f
\end{array}\right] \right\rvert\, a, f \in F^{\times}, g, g^{\prime} \in \mathrm{GL}(2), Y, X^{T} \in F^{2}\right\}
$$

where $g^{\prime}=w_{0}{ }^{-1} g w_{0}$.
Proof. Let $m=\left[\begin{array}{ll}m_{1} & \\ & m_{2}\end{array}\right] \in M$. Then $m \in M_{\psi_{A}}$ if and only if $A m_{1}=m_{2} A$. It follows that $m \in M_{\psi_{A}}$ if and only if $m_{1}=\left[\begin{array}{ccc}a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & a_{32} & a_{33}\end{array}\right]$ and $m_{2}=\left[\begin{array}{ccc}a_{33} & a_{32} & y_{13} \\ a_{23} & a_{22} & y_{23} \\ 0 & 0 & y_{33}\end{array}\right]$.

Let

$$
U_{M_{1}}=\left\{\left.\left[\begin{array}{cc}
1 & X \\
0 & I
\end{array}\right] \right\rvert\, X^{T} \in F^{2}\right\} \simeq F^{2}
$$

and

$$
U_{M_{2}}=\left\{\left.\left[\begin{array}{ll}
I & Y \\
0 & 1
\end{array}\right] \right\rvert\, Y \in F^{2}\right\} \simeq F^{2}
$$

Let $U_{A}=U_{M_{1}} \times U_{M_{2}} \simeq F^{2} \oplus F^{2}$. It is easy to see that U_{A} is a normal subgroup of $M_{\psi_{A}}$.
Lemma 4.2. Let $H_{A}=U_{A} \rtimes\left(F^{\times} \times \mathrm{GL}(2, F)\right)$. We have,

$$
M_{\psi_{A}} \simeq F^{\times} \rtimes H_{A},
$$

where F^{\times}is the subgroup of scalar matrices.
Proof. Trivial.

5. Character calculations of the twisted Jacquet module

In this section, we calculate the character values of $\pi_{N, \psi_{A}}$ at an arbitrary element in $M_{\psi_{A}}$. Before we proceed, we record a few results we need.

Lemma 5.1. Let $m=a h \in M_{\psi_{A}} \simeq F^{\times} \rtimes H_{A}$. Then,

$$
\Theta_{N, \psi_{A}}(m)=\theta(a) \Theta_{N, \psi_{A}}(h) .
$$

Proof. We refer the reader to Lemma 5.1 in [2].
Proposition 5.2. Let $h=\left[\begin{array}{cc}m_{1} & X \\ 0 & m_{2}\end{array}\right]$, where $X \in \mathrm{M}(3, F)$ and $m_{1}, m_{2} \in \operatorname{GL}(3, F)$ are upper triangular unipotent matrices. Let $W^{\prime}=\operatorname{Ker}\left(m_{2}-1\right)$. Then,

$$
\begin{aligned}
\operatorname{dim}(\operatorname{Ker}(h-1))=\operatorname{dim} & \left(\operatorname{Ker}\left(m_{1}-1\right)\right)+\operatorname{dim}\left(\operatorname{Ker}\left(m_{2}-1\right)\right)-\operatorname{dim}\left(X W^{\prime}\right) \\
+ & \operatorname{dim}\left(X W^{\prime} \cap \operatorname{Im}\left(m_{1}-1\right)\right) .
\end{aligned}
$$

Proof. See Proposition 5.5 in [2].
Lemma 5.3. Let $m \in M_{\psi_{A}}$. For a conjugacy class representative c of GL(2), let

$$
m_{c}=\left[\begin{array}{cccc}
a & X & & \\
0 & c & & \\
& & c^{\prime} & Y \\
& & 0 & f
\end{array}\right] \in M_{\psi_{A}}
$$

Then,

$$
\Theta_{N, \psi_{A}}(m)=\Theta_{N, \psi_{A}}\left(m_{c}\right)
$$

for some $m_{c} \in M_{\psi_{A}}$.

Proof. Trivial.
Theorem 5.4. Let $m_{c} \in M_{\psi_{A}}$, where $c=\left[\begin{array}{ll}d & 1 \\ 0 & d\end{array}\right]$. Then,

$$
\Theta_{N, \psi_{A}}\left(m_{c}\right)=0
$$

Proof. If $a \neq d$ or $d \neq f$, then the characteristic polynomial of m_{c} is not a power of a polynomial irreducible over F. Thus it follows that

$$
\Theta_{N, \psi_{A}}\left(m_{c}\right)=0
$$

Suppose that $a=d=f$. Then, $m_{c}=\left[\begin{array}{cc}m_{1} & 0 \\ 0 & m_{2}\end{array}\right]$, where

$$
m_{1}=\left[\begin{array}{lll}
d & x & y \\
0 & d & 1 \\
0 & 0 & d
\end{array}\right], m_{2}=\left[\begin{array}{ccc}
d & 0 & u \\
1 & d & v \\
0 & 0 & d
\end{array}\right]
$$

Let $h=\left[\begin{array}{cc}h_{1} & 0 \\ 0 & h_{2}\end{array}\right]$, where

$$
h_{1}=\left[\begin{array}{lll}
1 & x & y \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right], h_{2}=\left[\begin{array}{lll}
1 & 0 & u \\
1 & 1 & v \\
0 & 0 & 1
\end{array}\right]
$$

It is enough to show that

$$
\Theta_{N, \psi_{A}}(h)=0 .
$$

Let

$$
h_{2}^{\prime}=\left[\begin{array}{ccc}
1 & 1 & v \\
0 & 1 & u \\
0 & 0 & 1
\end{array}\right], \widetilde{\omega_{0}}=\left[\begin{array}{cc}
w_{0} & 0 \\
0 & 1
\end{array}\right] \text { and } Y=\left[\begin{array}{cc}
1 & 0 \\
0 & \widetilde{w_{0}}
\end{array}\right]
$$

where $w_{0} \in \operatorname{GL}(2, F)$ is the usual long Weyl element. Clearly, $h_{2}{ }^{\prime}=\widetilde{w_{0}} h_{2}{\widetilde{w_{0}}}^{-1}$. Thus we have

$$
\begin{aligned}
\Theta_{N, \psi_{A}}(h) & =\frac{1}{|N|} \sum_{X \in \mathrm{M}(3, F)} \Theta_{\pi}\left(\left[\begin{array}{cc}
h_{1} & X \\
0 & h_{2}
\end{array}\right]\right) \overline{\psi_{A}\left(h_{1}^{-1} X\right)} \\
& =\frac{1}{|N|} \sum_{X \in \mathrm{M}(3, F)} \Theta_{\pi}\left(Y^{-1}\left[\begin{array}{cc}
h_{1} & X \\
0 & h_{2}
\end{array}\right] Y\right) \overline{\psi_{A}\left(h_{1}^{-1} X\right)} \\
& =\frac{1}{|N|} \sum_{X \in \mathrm{M}(3, F)} \Theta_{\pi}\left(\left[\begin{array}{cc}
h_{1} & X \\
0 & h_{2}^{\prime}
\end{array}\right]\right) \overline{\psi_{A}\left(h_{1}^{-1} X{\widetilde{w_{0}}}^{-1}\right)}
\end{aligned}
$$

Let $u=\left[\begin{array}{cc}h_{1} & X \\ 0 & h_{2}^{\prime}\end{array}\right]$, where

$$
X=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
p & r & s
\end{array}\right] \in \mathrm{M}(3, F)
$$

Write $u=I+\nu$, where

$$
\nu=\left[\begin{array}{llllll}
0 & x & y & a & b & c \\
0 & 0 & 1 & d & e & f \\
0 & 0 & 0 & p & r & s \\
& & & 0 & 1 & v \\
& & & 0 & 0 & u \\
& & & 0 & 0 & 0
\end{array}\right] .
$$

It is easy to see that $\mathrm{M}(3, F)=S_{1} \oplus S_{2}$, where

$$
S_{1}=\left\{X=\left(x_{i j}\right) \in \mathrm{M}(3, F) \mid x_{22}=0=x_{32} \text { and } x_{i j} \in F \text { otherwise }\right\}
$$

and

$$
S_{2}=\left\{X=\left(x_{i j}\right) \in \mathrm{M}(3, F) \mid x_{22}, x_{32} \in F \text { and } x_{i j}=0 \text { otherwise }\right\}
$$

Any $X^{\prime} \in \mathrm{M}(2, F)$ can be embedded inside $\mathrm{M}(3, F)$ as

$$
\left[\begin{array}{cc}
0 & 0 \\
X^{\prime} & 0
\end{array}\right]:=X^{\prime}
$$

by abuse of notation. Let

$$
X_{1}^{\prime T}=\left[\begin{array}{lll}
0 & d & p
\end{array}\right] \text { and } X_{2}^{\prime T}=\left[\begin{array}{lll}
0 & e & r
\end{array}\right] .
$$

Thus we have,

$$
X^{\prime}=\left[\begin{array}{lll}
X_{1}^{\prime} & X_{2}^{\prime} & 0
\end{array}\right] \in \mathrm{M}(3, F)
$$

Let $B=\left(b_{i j}\right) \in \mathrm{M}(3, F)$ be such that the first column of B is $-X_{2}^{\prime}$ and $b_{i j}=0$ otherwise. Let

$$
I_{B}=\left[\begin{array}{cc}
I & B \\
0 & I
\end{array}\right]
$$

Then,

$$
I_{B} \cdot \nu=\left[\begin{array}{cccccc}
0 & x & y & b & a & c \\
0 & 0 & 1 & d & 0 & f-e v \\
0 & 0 & 0 & p & 0 & s-r u \\
& & & 0 & 1 & v \\
& & & 0 & 0 & u \\
& & & 0 & 0 & 0
\end{array}\right]:=u_{B}-I
$$

Note that $\operatorname{dim}(\operatorname{Ker}(u-I))=6-\operatorname{Rank}(u-I))$. Since $u=I+\nu$,

$$
\operatorname{Rank}(u-I)=\operatorname{Rank}(\nu)=\operatorname{Rank}\left(I_{B} \cdot \nu\right)=\operatorname{Rank}\left(u_{B}-I\right)
$$

Thus

$$
\operatorname{dim}(\operatorname{Ker}(u-I))=\operatorname{dim}\left(\operatorname{Ker}\left(u_{B}-I\right)\right)
$$

and we have

$$
\Theta_{\pi}(u)=\Theta_{\pi}\left(u_{B}\right) .
$$

Therefore,

$$
\begin{aligned}
\Theta_{N, \psi_{A}}(h) & =\frac{1}{|N|} \sum_{X \in \mathrm{M}(3, F)} \Theta_{\pi}(u) \overline{\psi_{A}\left(h_{1}^{-1} X{\widetilde{w_{0}}}^{-1}\right)} \\
& \left.=\frac{1}{|N|} \sum_{X \in \mathrm{M}(3, F)} \Theta_{\pi}\left(u_{B}\right) \overline{\psi_{A}\left(h_{1}^{-1} X \widetilde{w_{0}}\right.}{ }^{-1}\right)
\end{aligned}
$$

Since $X \in \mathrm{M}(3, F)$, we can write $X=Y_{1}+Y_{2}, Y_{1} \in S_{1}, Y_{2} \in S_{2}$ uniquely. Therefore,

$$
\Theta_{N, \psi_{A}}(h)=\frac{1}{|N|} \sum_{Y_{1} \in S_{1}} \Theta_{\theta}\left(u_{B}\right) \overline{\psi_{A}\left(h_{1}^{-1} Y_{1}{\widetilde{w_{0}}}^{-1}\right)}\left(\sum_{Y_{2} \in S_{2}} \overline{\psi_{A}\left(h_{1}^{-1} Y_{2}{\widetilde{w_{0}}}^{-1}\right)}\right)
$$

Now, we claim that

$$
\sum_{Y_{2} \in S_{2}} \overline{\psi_{A}\left(h_{1}^{-1} Y_{2}{\widetilde{w_{0}}}^{-1}\right)}=0
$$

Since $\operatorname{Tr}\left(A h_{1}^{-1} Y_{2}{\widetilde{w_{0}}}^{-1}\right)=r$, we have

$$
\begin{aligned}
\sum_{Y_{2} \in S_{2}} \overline{\psi_{A}\left(h_{1}^{-1} Y_{2}{\widetilde{w_{0}}}^{-1}\right)} & =\sum_{Y_{2} \in S_{2}} \overline{\psi_{0}\left(\operatorname{Tr}\left(A h_{1}^{-1} Y_{2}{\widetilde{w_{0}}}^{-1}\right)\right)} \\
& =\sum_{e, r \in F} \overline{\psi_{0}(r)} \\
& =0
\end{aligned}
$$

The result follows.
For $c=\left[\begin{array}{ll}a & 0 \\ 0 & a\end{array}\right]$, a conjugacy class representative of $\mathrm{GL}(2, F)$, consider

$$
m_{c}=\left[\begin{array}{cccc}
a & X & & \\
0 & c & & \\
& & c & Y \\
& & 0 & a
\end{array}\right] \in M_{\psi_{A}}
$$

We have,

$$
\Theta_{N, \psi_{A}}\left(m_{c}\right)=\theta(a) \Theta_{N, \psi_{A}}(k)
$$

where $k=\left[\begin{array}{cc}k_{1} & 0 \\ 0 & k_{2}\end{array}\right] \in M_{\psi_{A}}$. Thus, the computation of $\Theta_{N, \psi_{A}}\left(m_{c}\right)$ reduces to the computation of $\Theta_{N, \psi_{A}}(k)$.
Theorem 5.5. Let $k=\left[\begin{array}{cc}k_{1} & 0 \\ 0 & k_{2}\end{array}\right] \in M_{\psi_{A}}$, where $k_{1}=\left[\begin{array}{cc}1 & X \\ 0 & I\end{array}\right]$ and $k_{2}=\left[\begin{array}{cc}I & Y \\ 0 & 1\end{array}\right]$. Suppose that $X \neq 0$ and $Y=0$. Then,

$$
\Theta_{N, \psi_{A}}(k)=-\left(q^{2}-1\right)\left(q^{2}-q\right)
$$

Proof. We have

$$
\Theta_{N, \psi_{A}}(k)=\frac{1}{|N|} \sum_{X \in M(3, F)} \Theta_{\pi}\left[\begin{array}{cc}
k_{1} & X \\
0 & k_{2}
\end{array}\right] \overline{\psi_{A}\left(k_{1}^{-1} X\right)}
$$

It is easy to see that

$$
\operatorname{dim}\left(\operatorname{Ker}\left(k_{1}-1\right)\right)=2, \operatorname{Im}\left(k_{1}-1\right)=\operatorname{Span}\left\{e_{1}\right\}
$$

and

$$
W^{\prime}=\operatorname{Ker}\left(k_{2}-1\right)=\operatorname{Span}\left\{e_{1}, e_{2}, e_{3}\right\}
$$

For $\beta \in F$, let

$$
S(\beta)=\{X \in \mathrm{M}(3, F) \mid \operatorname{Tr}(A X)=\beta\}
$$

To calculate the character value, we write

$$
\Theta_{N, \psi_{A}}(k)=\frac{1}{q^{9}}\left(C_{1}+C_{2}\right)
$$

where

$$
C_{1}=\sum_{X \in S(0)} \Theta_{\pi}\left[\begin{array}{cc}
k_{1} & X \\
0 & k_{2}
\end{array}\right] \overline{\psi_{A}\left(k_{1}^{-1} X\right)}
$$

and

$$
C_{2}=\sum_{\beta \in F^{\times}} \sum_{X \in S(\beta)} \Theta_{\pi}\left[\begin{array}{cc}
k_{1} & X \\
0 & k_{2}
\end{array}\right] \overline{\psi_{A}\left(k_{1}^{-1} X\right)}
$$

To compute C_{1} and C_{2} we need some calculations which we summarize in Table 1 and Table 2 below. We write $t=\operatorname{dim}(\operatorname{Ker}(h-1))$. For

$$
X=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
p & r & s
\end{array}\right]
$$

we let

$$
X^{\prime}=\left[\begin{array}{ll}
d & e \\
p & r
\end{array}\right]
$$

Using the computations, we have

$$
C_{1}=K_{1}+K_{2}+K_{3}
$$

where
a) $\left.K_{1}=\sum_{\substack{X \in S(0) \\ t=5}} \Theta_{\pi}\left(\left[\begin{array}{cc}k_{1} & X \\ 0 & k_{2}\end{array}\right]\right) \overline{\psi_{A}\left(k_{1}^{-1} X\right.}\right)=-q^{3}(1-q)\left(1-q^{2}\right)\left(1-q^{3}\right)\left(1-q^{4}\right)$.
b) $K_{2}=\sum_{\substack{X \in S(0) \\ t=4}}^{t=5} \Theta_{\pi}\left(\left[\begin{array}{cc}k_{1} & X \\ 0 & k_{2}\end{array}\right]\right) \overline{\psi_{A}\left(k_{1}{ }^{-1} X\right)}=-q^{3}(q-1)(q+1)^{2}(1-q)\left(1-q^{2}\right)\left(1-q^{3}\right)$.
c) $\left.K_{3}=\sum_{\substack{X \in S(0) \\ t=3}} \Theta_{\pi}\left(\left[\begin{array}{cc}k_{1} & X \\ 0 & k_{2}\end{array}\right]\right) \overline{\psi_{A}\left(k_{1}{ }^{-1} X\right.}\right)=-q^{4}(q-1)\left(q^{3}+q^{2}-1\right)(1-q)\left(1-q^{2}\right)$.

It follows that

$$
C_{1}=\sum_{X \in S(0)} \Theta_{\pi}\left[\begin{array}{cc}
k_{1} & X \tag{5.1}\\
0 & k_{2}
\end{array}\right] \overline{\psi_{A}\left(k_{1}^{-1} X\right)}=-q^{9}(q-1)^{3}(q+1)
$$

Similarly, we have

$$
C_{2}=K_{4}+K_{5},
$$

where
a) $\left.K_{4}=\sum_{\beta \in F \times} \sum_{\substack{X \in S(\beta) \\ t=4}} \Theta_{\pi}\left(\left[\begin{array}{cc}k_{1} & X \\ 0 & k_{2}\end{array}\right]\right) \overline{\psi_{A}\left(k_{1}{ }^{-1} X\right.}\right)=q^{5}(q+1)(1-q)\left(1-q^{2}\right)\left(1-q^{3}\right)$
b) $\left.K_{5}=\sum_{\beta \in F \times} \sum_{\substack{X \in S(\beta) \\ t=3}} \Theta_{\pi}\left(\left[\begin{array}{cc}k_{1} & X \\ 0 & k_{2}\end{array}\right]\right) \overline{\psi_{A}\left(k_{1}^{-1} X\right.}\right)=q^{5}\left(q^{3}-q-1\right)(1-q)\left(1-q^{2}\right)$.

It follows that

$$
C_{2}=\sum_{\beta \in F^{\times}} \sum_{X \in S(\beta)} \Theta_{\pi}\left[\begin{array}{cc}
k_{1} & X \tag{5.2}\\
0 & k_{2}
\end{array}\right] \overline{\psi_{A}\left(k_{1}^{-1} X\right)}=-q^{9}(q-1)^{2}(q+1) .
$$

From (5.1) and (5.2), it follows that

$$
\Theta_{N, \psi_{A}}(k)=-\left(q^{2}-q\right)\left(q^{2}-1\right)
$$

Table 1. Calculations for computing C_{1}

Partition of $S(0)$	Type of matrix	$\operatorname{dim}(\operatorname{Ker}(h-1))$	Cardinality
$\operatorname{Rank}(X)=0$	$\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$	$2+3-0+0=5$	1
$\begin{aligned} \operatorname{Rank}(X) & =1 \\ \operatorname{Rank}\left(X^{\prime}\right) & =0 \end{aligned}$	$\begin{gathered} {\left[\begin{array}{lll} a & b & c \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right]} \\ {\left[\begin{array}{lll} 0 & 0 & c \\ 0 & 0 & f \\ 0 & 0 & s \end{array}\right],(f, s) \neq(0,0)} \end{gathered}$	$2+3-1+1=5$ $2+3-1+0=4$	$\left(q^{3}-1\right)$ $\left(q^{2}-1\right) q$
$\begin{aligned} \operatorname{Rank}(X) & =1 \\ \operatorname{Rank}\left(X^{\prime}\right) & =1 \end{aligned}$	$\begin{gathered} {\left[\begin{array}{ccc} 0 & b & c \\ 0 & 0 & 0 \\ 0 & r & s \end{array}\right], r \in F^{\times}} \\ \left\{\left.\left[\begin{array}{ccc} a & b & c \\ d & e & f \\ -e & r & s \end{array}\right] \right\rvert\, \begin{array}{c} d \in F^{\times} \\ d r+e^{2}=0 \end{array}\right\} \end{gathered}$	$2+3-1+0=4$ $2+3-1+0=4$	$\begin{aligned} & (q-1) q^{2} \\ & (q-1) q^{3} \end{aligned}$
$\begin{aligned} \operatorname{Rank}(X) & =2 \\ \operatorname{Rank}\left(X^{\prime}\right) & =0 \end{aligned}$	$\left[\begin{array}{lll}a & b & c \\ 0 & 0 & f \\ 0 & 0 & s\end{array}\right]$	$2+3-2+1=4$	$\left(q^{2}-1\right)^{2} q$
$\begin{aligned} \operatorname{Rank}(X) & =2 \\ \operatorname{Rank}\left(X^{\prime}\right) & =1 \end{aligned}$	$\left.\begin{array}{c} {\left[\begin{array}{lll} a & b & c \\ 0 & 0 & 0 \\ 0 & r & s \end{array}\right], r \in F^{\times}} \\ \left\{\left[\begin{array}{lll} a & b & c \\ 0 & 0 & f \\ 0 & r & s \end{array}\right], r, f \in F^{\times}\right. \\ \left.\left\{\begin{array}{lll} a & b & c \\ d & e & f \\ -e & r & s \end{array}\right] \left\lvert\, \begin{array}{c} d \in F^{\times} \\ (f, s) \in \operatorname{Se}=0 \\ (\sin (e, r) \end{array}\right.\right\} \end{array}\right\} \begin{aligned} & \left\{\left[\begin{array}{lll} a & b & c \\ d & 0 & f \\ 0 & 0 & s \end{array}\right] \left\lvert\, \begin{array}{c} d \in F^{\times} \\ (f, s) \in \operatorname{Span}(d, 0) \end{array}\right.\right\} \\ & \left\{\left[\begin{array}{lll} a & b & c \\ d & e & f \\ -e & r & s \end{array}\right] \left\lvert\, \begin{array}{c} d, e \in F^{\times} \\ d+r+e^{2}=0 \\ (f, s) \notin \operatorname{Span}(e, r) \end{array}\right.\right\} \end{aligned}$	$\begin{aligned} & 2+3-2+1=4 \\ & 2+3-2+0=3 \\ & 2+3-2+1=4 \\ & 2+3-2+1=4 \\ & 2+3-2+0=3 \end{aligned}$	$\begin{aligned} & (q-1) q\left(q^{3}-q\right) \\ & (q-1)^{2} q\left(q^{2}\right) \\ & (q-1) q^{2}\left(q^{3}-q\right) \\ & (q-1)^{2} q^{2}(q+1) \end{aligned}$ $(q-1)^{2} q^{2}\left(q^{2}-q-1\right)$
$\begin{aligned} \operatorname{Rank}(X) & =2 \\ \operatorname{Rank}\left(X^{\prime}\right) & =2 \end{aligned}$	$\begin{aligned} & \left\{\left.\left[\begin{array}{ccc} a & b & c \\ d & e & f \\ -e & 0 & s \end{array}\right] \right\rvert\, e \in F^{\times}\right\} \\ & \left\{\left.\left[\begin{array}{ccc} a & b & c \\ d & e & f \\ -e & r & s \end{array}\right] \right\rvert\, \begin{array}{c} r \in F^{\times} \times \\ d r+e^{2} \neq 0 \end{array}\right\} \end{aligned}$	$2+3-2+0=3$ $2+3-2+0=3$	$(q-1) q^{5}$ $(q-1)^{2} q^{5}$
$\begin{aligned} \operatorname{Rank}(X) & =3 \\ \operatorname{Rank}\left(X^{\prime}\right) & =1 \end{aligned}$	$\begin{gathered} \left\{\left.\left[\begin{array}{ccc} a & b & c \\ 0 & 0 & f \\ 0 & r & s \end{array}\right] \right\rvert\, r \in F^{\times}\right\} \\ \left\{\left.\left[\begin{array}{ccc} a & b & c \\ d & e & f \\ -e & r & s \end{array}\right] \right\rvert\, \begin{array}{c} d \in F^{\times} \\ d r+e^{2}=0 \end{array}\right\} \end{gathered}$	$2+3-3+1=3$ $2+3-3+1=3$	$(q-1)^{2}\left(q^{2}-q\right) q^{2}$ $(q-1)^{3} q^{4}$
$\begin{aligned} \operatorname{Rank}(X) & =3 \\ \operatorname{Rank}\left(X^{\prime}\right) & =2 \end{aligned}$	$\begin{gathered} \left\{\left.\left[\begin{array}{ccc} a & b & c \\ d & e & f \\ -e & 0 & s \end{array}\right] \right\rvert\, e \neq 0\right\} \\ \left\{\left.\left[\begin{array}{ccc} a & b & c \\ d & e & f \\ -e & r & s \end{array}\right] \right\rvert\, \begin{array}{c} r \in F^{\times} \times \\ d r+e^{2} \neq 0 \end{array}\right\} \end{gathered}$	$2+3-3+1=3$ $2+3-3+1=3$	$(q-1)^{2} q^{5}$ $(q-1)^{3} q^{5}$

Table 2. Computations for calculating C_{2}

Partition of $S(\beta)$	Type of matrix	$\operatorname{dim}(\operatorname{Ker}(h-1))$	Cardinality
$\begin{aligned} \operatorname{Rank}(X) & =1 \\ \operatorname{Rank}\left(X^{\prime}\right) & =1\end{aligned}$	$\begin{gathered} {\left[\begin{array}{lll} a & b & c \\ 0 & \beta & 0 \\ 0 & r & s \end{array}\right]} \\ {\left[\begin{array}{lll} a & b & c \\ 0 & 0 & f \\ \beta & r & s \end{array}\right]} \\ \left\{\left.\left[\begin{array}{ccc} a & b & c \\ d & e & f \\ \beta-e & r & s \end{array}\right] \right\rvert\, \begin{array}{c} d \neq 0 \\ r=e(\beta-e) d^{-1} \\ \hline \end{array}\right\} \end{gathered}$	$2+3-1+0=4$ $2+3-1+0=4$ $2+3-1+0=4$	q^{3} q^{3} $(q-1) q^{3}$
$\begin{aligned} \operatorname{Rank}(X) & =2 \\ \operatorname{Rank}\left(X^{\prime}\right) & =1 \end{aligned}$		$\begin{aligned} & 2+3-2+0=3 \\ & 2+3-2+1=4 \\ & 2+3-2+1=4 \\ & 2+3-2+0=3 \\ & 2+3-2+1=4 \\ & 2+3-2+1=4 \\ & 2+3-2+0=3 \end{aligned}$	$\begin{gathered} q^{3}\left(q^{2}-q\right) \\ q^{2}\left(q^{3}-q\right) \\ q^{2}\left(q^{3}-q\right) \\ q^{4}(q-1) \\ q^{2}(q-1)\left(q^{3}-q\right) \\ (q-1)^{2} q^{2}(q+1) \\ (q-1)^{2} q^{2}\left(q^{2}-q-1\right) \end{gathered}$
$\begin{aligned} \operatorname{Rank}(X) & =2 \\ \operatorname{Rank}\left(X^{\prime}\right) & =2 \end{aligned}$	$\begin{gathered} \left\{\left.\left[\begin{array}{ccc} a & b & c \\ d & e & f \\ \beta-e & 0 & s \end{array}\right] \right\rvert\, e \in F^{\times}, e \neq \beta\right\} \\ \left\{\left.\left[\begin{array}{ccc} a & b & c \\ d & e & f \\ \beta-e & r & s \end{array}\right] \right\rvert\, r \in F^{\times}\right\} \end{gathered}$	$2+3-2+0=3$ $2+3-2+0=3$	$(q-2) q^{5}$ $(q-1)^{2} q^{5}$
$\begin{aligned} & \operatorname{Rank}(X)=3 \\ & \operatorname{Rank}\left(X^{\prime}\right)=1 \end{aligned}$	$\begin{gathered} {\left[\begin{array}{lll} a & b & c \\ 0 & \beta & f \\ 0 & r & s \end{array}\right]} \\ \left\{\left.\left[\begin{array}{ccc} a & b & c \\ d & e & f \\ \beta-e & r & s \end{array}\right] \right\rvert\, \begin{array}{c} d \in F^{\times} \\ r=e(e-\beta) d^{-1} \end{array}\right\} \end{gathered}$	$2+3-3+1=3$ $2+3-3+1=3$	$2 q\left(q^{2}-q\right)\left(q^{3}-q^{2}\right)$ $(q-1)^{3} q^{4}$
$\begin{aligned} \operatorname{Rank}(X) & =3 \\ \operatorname{Rank}\left(X^{\prime}\right) & =2 \end{aligned}$	$\begin{gathered} \left\{\left.\left[\begin{array}{ccc} a & b & c \\ d & e & f \\ \beta-e & 0 & s \end{array}\right] \right\rvert\, e \neq 0, e \neq \beta\right\} \\ \left\{\left.\left[\begin{array}{ccc} a & b & c \\ d & e & f \\ \beta-e & r & s \end{array}\right] \right\rvert\, r \in F^{\times}\right\} \end{gathered}$	$2+3-3+1=3$ $2+3-3+1=3$	$(q-2)(q-1) q^{5}$ $(q-1)^{3} q^{5}$

Theorem 5.6. Let $k=\left[\begin{array}{cc}k_{1} & 0 \\ 0 & k_{2}\end{array}\right] \in M_{\psi_{A}}$, where $k_{1}=\left[\begin{array}{cc}1 & X \\ 0 & I\end{array}\right]$ and $k_{2}=\left[\begin{array}{cc}I & Y \\ 0 & 1\end{array}\right]$. Suppose that $X=0$ and $Y \neq 0$. Then,

$$
\Theta_{N, \psi_{A}}(k)=-\left(q^{2}-1\right)\left(q^{2}-q\right) .
$$

Proof. Let $m_{1}=w_{0} k_{2}^{T} w_{0}^{-1}$ and $m_{2}=w_{0} k_{1}^{T} w_{0}{ }^{-1}=I$, where w_{0} is the usual long Weyl element of GL $(3, F)$. Using Theorem 5.5, it is enough to show that

$$
\Theta_{N, \psi_{A}}(m)=\Theta_{N, \psi_{A}}(k) .
$$

We have,

$$
\begin{aligned}
|N| \Theta_{N, \psi_{A}}(k) & =\sum_{X \in \mathrm{M}(3, F)} \Theta_{\pi}\left[\begin{array}{cc}
w_{0} m_{2}{ }^{T} w_{0}{ }^{-1} & X \\
0 & w_{0} m_{1}{ }^{T} w_{0}{ }^{-1}
\end{array}\right] \overline{\psi_{A}(X)} \\
& =\sum_{X \in \mathrm{M}(3, F)} \Theta_{\pi}\left(\left[\begin{array}{cc}
w_{0} & 0 \\
0 & w_{0}
\end{array}\right]\left[\begin{array}{cc}
m_{2}^{T} & w_{0}{ }^{-1} X w_{0} \\
0 & m_{1}^{T}
\end{array}\right]\left[\begin{array}{cc}
w_{0}^{-1} & 0 \\
0 & w_{0}^{-1}
\end{array}\right]\right) \overline{\psi_{A}(X)} \\
& =\sum_{X \in \mathrm{M}(3, F)} \Theta_{\pi}\left(\left[\begin{array}{cc}
m_{2}^{T} & w_{0}^{-1} X w_{0} \\
0 & m_{1}{ }^{T}
\end{array}\right]\right) \overline{\psi_{A}(X)} .
\end{aligned}
$$

Using the fact that $\operatorname{Tr}\left(A w_{0}{ }^{-1} X^{T} w_{0}\right)=\operatorname{Tr}(A X)$, and $\psi_{A}\left(m_{1}{ }^{-1} X\right)=\psi_{A}(X)$, it follows that

$$
\begin{aligned}
|N| \Theta_{N, \psi_{A}}(m) & =\sum_{X \in \mathrm{M}(3, F)} \Theta_{\pi}\left[\begin{array}{cc}
m_{1} & X \\
0 & m_{2}
\end{array}\right] \overline{\psi_{A}(X)} \\
& =\sum_{X \in \mathrm{M}(3, F)} \Theta_{\pi}\left[\begin{array}{cc}
m_{1} & X^{T} \\
0 & m_{2}
\end{array}\right] \overline{\psi_{A}\left(X^{T}\right)} \\
& =\sum_{X \in \mathrm{M}(3, F)} \Theta_{\pi}\left[\begin{array}{cc}
m_{1} & w_{0}^{-1} X^{T} w_{0} \\
0 & m_{2}
\end{array}\right] \overline{\psi_{A}\left(w_{0}{ }^{-1} X^{T} w_{0}\right)} \\
& =\sum_{X \in \mathrm{M}(3, F)} \Theta_{\pi}\left[\begin{array}{cc}
m_{1} & w_{0}^{-1} X^{T} w_{0} \\
0 & m_{2}
\end{array}\right] \overline{\psi_{A}(X)} .
\end{aligned}
$$

Since,

$$
\begin{aligned}
\operatorname{Rank}\left(\left[\begin{array}{cc}
m_{2}{ }^{T}-I & w_{0}{ }^{-1} X w_{0} \\
0 & m_{1}^{T}-I
\end{array}\right]\right) & =\operatorname{Rank}\left(\left[\begin{array}{cc}
m_{2}-I & 0 \\
w_{0}{ }^{-1} X^{T} w_{0} & m_{1}-I
\end{array}\right]\right) \\
& =\operatorname{Rank}\left(\left[\begin{array}{cc}
0 & I \\
I & 0
\end{array}\right]\left[\begin{array}{cc}
m_{2}-I & 0 \\
w_{0}^{-1} X^{T} w_{0} & m_{1}-I
\end{array}\right]\left[\begin{array}{ll}
0 & I \\
I & 0
\end{array}\right]\right) \\
& =\operatorname{Rank}\left(\left[\begin{array}{cc}
m_{1}-I & w_{0}^{-1} X^{T} w_{0} \\
0 & m_{2}-I
\end{array}\right]\right)
\end{aligned}
$$

it follows that

$$
\Theta_{\pi}\left(\left[\begin{array}{cc}
m_{1} & w_{0}^{-1} X^{T} w_{0} \\
0 & m_{2}
\end{array}\right]\right)=\Theta_{\pi}\left(\left[\begin{array}{cc}
m_{2}{ }^{T} & w_{0}^{-1} X w_{0} \\
0 & m_{1}^{T}
\end{array}\right]\right) .
$$

Hence the result.
Theorem 5.7. Let $k=\left[\begin{array}{cc}k_{1} & 0 \\ 0 & k_{2}\end{array}\right] \in M_{\psi_{A}}$, where $k_{1}=\left[\begin{array}{cc}1 & X \\ 0 & I\end{array}\right]$ and $k_{2}=\left[\begin{array}{cc}I & Y \\ 0 & 1\end{array}\right]$. Suppose that $X \neq 0$ and $Y \neq 0$. Then,

$$
\Theta_{N, \psi_{A}}(k)=\left(q^{2}-q\right) .
$$

Proof. We have

$$
\Theta_{N, \psi_{A}}(k)=\frac{1}{|N|} \sum_{X \in M(3, F)} \Theta_{\pi}\left[\begin{array}{cc}
k_{1} & X \\
0 & k_{2}
\end{array}\right] \overline{\psi_{A}\left(k_{1}^{-1} X\right)} .
$$

It is easy to see that

$$
\operatorname{dim}\left(\operatorname{Ker}\left(k_{1}-1\right)\right)=2, \operatorname{Im}\left(k_{1}-1\right)=\operatorname{Span}\left\{e_{1}\right\}
$$

and

$$
W^{\prime}=\operatorname{Ker}\left(k_{2}-1\right)=\operatorname{Span}\left\{e_{1}, e_{2}\right\}
$$

To calculate the character value, we write

$$
\Theta_{N, \psi_{A}}(k)=\frac{1}{q^{9}}\left(B_{1}+B_{2}\right)
$$

where

$$
B_{1}=\sum_{X \in S(0)} \Theta_{\pi}\left[\begin{array}{cc}
k_{1} & X \\
0 & k_{2}
\end{array}\right] \overline{\psi_{A}\left(k_{1}^{-1} X\right)}
$$

and

$$
B_{2}=\sum_{\beta \in F^{\times}} \sum_{X \in S(\beta)} \Theta_{\pi}\left[\begin{array}{cc}
k_{1} & X \\
0 & k_{2}
\end{array}\right] \overline{\psi_{A}\left(k_{1}^{-1} X\right)}
$$

To compute B_{1} and B_{2} we need some calculations which we summarize in Table 3 and Table 4 below. We write $t=\operatorname{dim}(\operatorname{Ker}(h-1))$. For

$$
X=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
p & r & s
\end{array}\right]
$$

we let

$$
X^{\prime}=\left[\begin{array}{ll}
d & e \\
p & r
\end{array}\right]
$$

Using the computations, we have

$$
B_{1}=K_{1}+K_{2}+K_{3},
$$

where
a) $\left.K_{1}=\sum_{\substack{X \in S(0) \\ t=4}} \Theta_{\pi}\left(\left[\begin{array}{cc}k_{1} & X \\ 0 & k_{2}\end{array}\right]\right) \overline{\psi_{A}\left(k_{1}^{-1} X\right.}\right)=-q^{5}(1-q)\left(1-q^{2}\right)\left(1-q^{3}\right)$.
b) $\left.K_{2}=\sum_{\substack{X \in S(0) \\ t=3}} \Theta_{\pi}\left(\left[\begin{array}{cc}k_{1} & X \\ 0 & k_{2}\end{array}\right]\right) \overline{\psi_{A}\left(k_{1}^{-1} X\right.}\right)=-q^{5}\left(q^{2}-1\right)(1-q)\left(1-q^{2}\right)$.
c) $K_{3}=\sum_{\substack{X \in S(0) \\ t=2}} \Theta_{\pi}\left(\left[\begin{array}{cc}k_{1} & X \\ 0 & k_{2}\end{array}\right]\right) \overline{\psi_{A}\left(k_{1}^{-1} X\right)}=-q^{7}(q-1)(1-q)$.

Hence,

$$
B_{1}=\sum_{X \in S(0)} \Theta_{\pi}\left[\begin{array}{cc}
k_{1} & X \tag{5.3}\\
0 & k_{2}
\end{array}\right] \overline{\psi_{A}\left(k_{1}^{-1} X\right)}=q^{9}(q-1)^{2}
$$

Similarly, we have

$$
B_{2}=K_{4}+K_{5}
$$

where
a) $K_{4}=\sum_{\beta \in F^{\times}} \sum_{\substack{X \in S(\beta) \\ t=3}} \Theta_{\pi}\left(\left[\begin{array}{cc}k_{1} & X \\ 0 & k_{2}\end{array}\right]\right) \overline{\psi_{A}\left(k_{1}^{-1} X\right)}=q^{6}(q+1)(1-q)\left(1-q^{2}\right)$
b) $\left.K_{5}=\sum_{\beta \in F \times} \sum_{\substack{X \in S(\beta) \\ t=2}} \Theta_{\pi}\left(\left[\begin{array}{cc}k_{1} & X \\ 0 & k_{2}\end{array}\right]\right) \overline{\psi_{A}\left(k_{1}{ }^{-1} X\right.}\right)=q^{6}\left(q^{2}-q-1\right)(1-q)$.

It follows that

$$
B_{2}=\sum_{\beta \in F^{\times}} \sum_{X \in S(\beta)} \Theta_{\pi}\left[\begin{array}{cc}
k_{1} & X \tag{5.4}\\
0 & k_{2}
\end{array}\right] \overline{\psi_{A}\left(k_{1}^{-1} X\right)}=q^{9}(q-1) .
$$

From Equations (5.3) and (5.4), it follows that

$$
\Theta_{N, \psi_{A}}(k)=\left(q^{2}-q\right)
$$

Table 3. Computations for calculating B_{1}

Partition of $S(0)$	Type of matrix	$\operatorname{dim}(\operatorname{Ker}(h-1))$	Cardinality
$\operatorname{Rank}\left(X^{\prime}\right)=0$	$\begin{gathered} {\left[\begin{array}{lll} 0 & 0 & c \\ 0 & 0 & f \\ 0 & 0 & s \end{array}\right]} \\ \left\{\left.\left[\begin{array}{lll} a & b & c \\ 0 & 0 & f \\ 0 & 0 & s \end{array}\right] \right\rvert\,(a, b) \neq 0\right\} \end{gathered}$	$2+2-0+0=4$ $2+2-1+1=4$	$\left(q^{2}-1\right) q^{3}$
$\operatorname{Rank}\left(X^{\prime}\right)=1$	$\left.\begin{array}{c} \left\{\left[\begin{array}{lll} a & b & c \\ d & e & f \\ -e & r & s \end{array}\right] \left\lvert\, \operatorname{Rank}\left(\begin{array}{cc} e^{2}+d r=0 \\ a & b \\ d & e \end{array}\right) \leq 1\right.\right. \end{array}\right\}$	$2+2-1+0=3$ $2+2-2+1=3$ $2+2-2+1=3$	$\begin{aligned} & \left(q^{2}-1\right) q^{4} \\ & (q-1)^{2} q^{4} \\ & (q-1)^{2} q^{5} \end{aligned}$
$\operatorname{Rank}\left(X^{\prime}\right)=2$	$\left\{\left.\left[\begin{array}{ccc}a & b & c \\ d & e & f \\ -e & r & s\end{array}\right] \right\rvert\, d r+e^{2} \neq 0\right\}$	$2+2-2+0=2$	$(q-1) q^{7}$

TABLE 4. Computations for calculating B_{2}

Partition of $S(\beta)$	Type of matrix	$\operatorname{dim}(\operatorname{Ker}(h-1))$	Cardinality
$\operatorname{Rank}\left(X^{\prime}\right)=1$	$\left[\begin{array}{lll} 0 & b & c \\ 0 & \beta & f \\ 0 & r & s \end{array}\right]$	$2+2-1+0=3$	q^{5}
	$\left[\begin{array}{lll} a & b & c \\ 0 & \beta & f \\ 0 & r & s \end{array}\right]$	$2+2-2+1=3$	$q\left(q^{2}-q\right) q^{3}$
	$\left[\begin{array}{lll} a & b & c \\ 0 & 0 & f \\ \beta & r & s \end{array}\right]$	$2+2-1+0=3$	q^{5}
	$\left[\begin{array}{lll} a & b & c \\ 0 & 0 & f \\ \beta & r & s \end{array}\right]$	$2+2-2+1=3$	$q\left(q^{2}-q\right) q^{3}$
	$\left\{\left[\begin{array}{ccc}a & b & c \\ d & e & f \\ \beta-e & r & s\end{array}\right] \left\lvert\, \begin{array}{c}d \neq 0, r=e(\beta-e) d^{-1} \\ \operatorname{Rank}\left(\begin{array}{cc}a & b \\ d & e\end{array}\right)=1\end{array}\right.\right\}$	$2+2-1+0=3$	$(q-1) q^{5}$
	$\left\{\left[\begin{array}{ccccc}a & b & c d & e & f \\ \beta-e & r & s & \end{array}\right] \left\lvert\, \begin{array}{c}d \neq 0, r=e(\beta-e) d^{-1} \\ \operatorname{Rank}\left(\begin{array}{ll}a & b \\ d & e\end{array}\right)=2\end{array}\right.\right\}$	$2+2-2+1=3$	$(q-1)\left(q^{2}-q\right) q^{4}$
$\operatorname{Rank}\left(X^{\prime}\right)=2$	$\left[\begin{array}{ccc}a & b & c \\ d & e & f \\ \beta-e & r & s\end{array}\right]$	$2+2-2+0=2$	$q^{5}\left(q^{3}-q^{2}-q\right)$

5.1. Steps for computing the character values of $\pi_{N, \psi_{A}}$. In this section, we explain the steps that we need to compute the character values for $\pi_{N, \psi_{A}}$. Let

$$
m_{c}=\left[\begin{array}{cccc}
a & X & & \\
0 & c & & \\
& & c & Y \\
& & 0 & f
\end{array}\right] \in M_{\psi_{A}}
$$

where c is a conjugacy class representative of $\mathrm{GL}(2)$. Let $h_{c}=m_{c} n, n \in N$. By Proposition 2.3, we have

$$
\Theta_{N, \psi_{A}}\left(m_{c}\right)=\frac{1}{|N|} \sum_{n \in N} \Theta_{\pi}\left(h_{c}\right) \overline{\psi_{A}(n)} .
$$

If the characteristic polynomial of h_{c} is not a power of a polynomial irreducible over F, we can conclude using Theorem 2.1 that

$$
\Theta_{N, \psi_{A}}\left(m_{c}\right)=0
$$

Suppose that the characteristic polynomial of h_{c} is a power of a polynomial irreducible over F. We proceed in the following manner.
(1) Let $c=\left[\begin{array}{ll}d & 1 \\ 0 & d\end{array}\right]$. Suppose also that $a=d=f$. Using Theorem 5.4, we have

$$
\Theta_{N, \psi_{A}}\left(m_{c}\right)=0
$$

(2) Let $c=\left[\begin{array}{ll}a & 0 \\ 0 & a\end{array}\right]$. Suppose also that $a=f$. From Lemma 5.1, we have

$$
\Theta_{N, \psi_{A}}\left(m_{c}\right)=\theta(a) \Theta_{N, \psi_{A}}(k),
$$

where $k=\left[\begin{array}{cc}k_{1} & 0 \\ 0 & k_{2}\end{array}\right]$ with $k_{1}=\left[\begin{array}{cc}1 & Z \\ 0 & I\end{array}\right]$ and $k_{2}=\left[\begin{array}{cc}I & Y \\ 0 & 1\end{array}\right], Z^{T}, Y \in F^{2}$.
(a) We partition the set

$$
\mathrm{M}(3, F)=S(0) \bigsqcup_{\beta \in F^{\times}} S(\beta),
$$

where

$$
S(0)=\left\{X \in \mathrm{M}(3, F) \mid \operatorname{Tr}\left(A k_{1}^{-1} X\right)=0\right\}
$$

and

$$
S(\beta)=\left\{X \in \mathrm{M}(3, F) \mid \operatorname{Tr}\left(A k_{1}^{-1} X\right)=\beta\right\} .
$$

(b) We write

$$
\begin{aligned}
\Theta_{N, \psi_{A}}\left(\left[\begin{array}{cc}
k_{1} & 0 \\
0 & k_{2}
\end{array}\right]\right) & =\frac{1}{|N|} \sum_{X \in \mathrm{M}(3, F)} \Theta_{\pi}\left(\left[\begin{array}{cc}
k_{1} & X \\
0 & k_{2}
\end{array}\right]\right) \overline{\psi_{A}\left(k_{1}^{-1} X\right)} \\
& =\frac{1}{|N|}\left(C_{1}+C_{2}\right)
\end{aligned}
$$

where

$$
C_{1}=\sum_{X \in S(0)} \Theta_{\pi}\left(\left[\begin{array}{cc}
k_{1} & X \\
0 & k_{2}
\end{array}\right]\right) \overline{\psi_{0}(0)}
$$

and

$$
C_{2}=\sum_{\beta \in F \times} \sum_{X \in S(\beta)} \Theta_{\pi}\left(\left[\begin{array}{cc}
k_{1} & X \\
0 & k_{2}
\end{array}\right]\right) \overline{\psi_{0}(\beta)}
$$

(c) Let $h=\left[\begin{array}{cc}k_{1} & X \\ 0 & k_{2}\end{array}\right]$. We compute $\operatorname{dim}\left(\operatorname{Ker}\left(k_{1}-1\right), \operatorname{dim}\left(\operatorname{Ker}\left(k_{2}-1\right)\right)\right.$ and the space of $\left.W^{\prime}=\operatorname{Ker}\left(k_{2}-1\right)\right)$ and $\operatorname{Im}\left(k_{1}-1\right)$.
(d) For $X=\left(x_{i j}\right) \in \mathrm{M}(3, F)$, we denote $X^{\prime} \in \mathrm{M}(2, F)$ to be the submatrix

$$
X^{\prime}=\left[\begin{array}{ll}
x_{21} & x_{22} \\
x_{31} & x_{32}
\end{array}\right]
$$

of X . For $0 \leq j \leq i \leq 3, j<3$ and $\beta \in F$, we let

$$
S(\beta)_{i}^{j}=\left\{X \in S(\beta) \mid \operatorname{Rank}(X)=i, \operatorname{Rank}\left(X^{\prime}\right)=j\right\}
$$

We show that

$$
S(0)=\bigsqcup_{\substack{0 \leq i \leq 3 \\ j \leq i, j<3}} S(0)_{i}^{j}
$$

(e) For $X \in S(0)_{i}^{j}$, using Proposition 5.2 we compute $\operatorname{dim}(\operatorname{Ker}(h-1))$. Using Theorem 2.2, we compute

$$
C_{1}=\sum_{t=1}^{6} \sum_{\substack{X \in S(0) \\ \operatorname{dim}(\operatorname{Ker}(h-1))=t}}(-1) \theta(1)(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{t-1}\right) \overline{\psi_{0}(0)}
$$

In a similar way can can compute C_{2}.
(f) Using (b) above we can compute $\Theta_{N, \psi_{A}}\left(\left[\begin{array}{cc}k_{1} & 0 \\ 0 & k_{2}\end{array}\right]\right)$.

Table 5. Character values for the twisted Jacquet module

$\mathrm{Cl}(\mathrm{GL}(2))$	m	$\Theta_{N, \psi_{A}}(m)$
$c=\left[\begin{array}{ll}p & 0 \\ 0 & r\end{array}\right], p \neq r$	$\left[\begin{array}{cccc}a & X & & \\ 0 & c & & \\ & & c^{\prime} & Y \\ & & 0 & f\end{array}\right]$	0
$c=\left[\begin{array}{ll}d & 1 \\ 0 & d\end{array}\right]$	$\left[\begin{array}{cccc}a & X & & \\ 0 & c & & \\ & & c^{\prime} & Y \\ & & 0 & f\end{array}\right]$	$\left\{\begin{array}{cc}0 & \text {; if } d \neq a \\ & \text { or } d \neq f \\ 0 & \text {;if } a=d=f\end{array}\right\}$
$c=\left[\begin{array}{cc}p & \delta r \\ r & p\end{array}\right]$	$\left[\begin{array}{cccc}a & X & & \\ 0 & c & & \\ & & c^{\prime} & Y \\ & & 0 & f\end{array}\right]$	0
$c=\left[\begin{array}{ll}p & 0 \\ 0 & p\end{array}\right]$	$\left[\begin{array}{cccc}a & X & & \\ 0 & c & & \\ & & c^{\prime} & Y \\ & & 0 & \end{array}\right]$	$\left\{\begin{array}{ll}0 & \text { if } p \neq a \\ & \text { or } p \neq f\end{array}\right\}$
$c=\left[\begin{array}{ll}a & 0 \\ 0 & a\end{array}\right]$	$\left[\begin{array}{cccc}a & X & & \\ 0 & c & & \\ & & c^{\prime} & Y \\ & & 0 & a\end{array}\right]$	$\left\{\begin{array}{ll}-\theta(a)\left(q^{2}-1\right)\left(q^{2}-q\right) & ; \text { if } X^{T} \neq \mathbf{0}, \mathbf{Y}=\mathbf{0} \\ \text { or } Y \neq \mathbf{0}, \mathbf{X}=\mathbf{0}\end{array}\right\}$
$c=\left[\begin{array}{ll}a & 0 \\ 0 & a\end{array}\right]$	$\left[\begin{array}{cccc}a & X & & \\ 0 & c & & \\ & & c^{\prime} & Y \\ & & 0 & a\end{array}\right]$	$\theta(a)\left(q^{2}-q\right)$ if $X^{T}, Y \neq \mathbf{0}$

6. The Representation τ_{1}

Let ψ_{1} be the character of U_{A} given by

$$
\psi_{1}\left(\left[\begin{array}{cccc}
1 & X & & \\
0 & I & & \\
& & I & Y \\
& & 0 & 1
\end{array}\right]\right)=\psi_{0}(x+v)
$$

where $X^{T}=\left[\begin{array}{l}x \\ y\end{array}\right]$ and $Y=\left[\begin{array}{l}u \\ v\end{array}\right]$. The inertia subgroup of ψ_{1} in H_{A} is given by

$$
\begin{aligned}
I_{1}=I_{H_{A}}\left(\psi_{1}\right) & =\left\{h \in H_{A} \mid{ }^{h} \psi_{1} \simeq \psi_{1}\right\} \\
& =\left\{h \in H_{A} \mid \psi_{1}\left(h^{-1} u h\right)=\psi_{1}(u), \forall u \in U_{A}\right\} \\
& =U_{A} \rtimes F^{\times} .
\end{aligned}
$$

To be precise, we have

$$
I_{1}=I_{H_{A}}\left(\psi_{1}\right)=\left\{\left.\left[\begin{array}{cccccc}
1 & x & y & & & \\
0 & 1 & 0 & & & \\
0 & 0 & a & & & \\
& & & a & 0 & u \\
& & & 0 & 1 & v \\
& & & 0 & 0 & 1
\end{array}\right] \right\rvert\, a \in F^{\times}, x, y, u, v \in F\right\}
$$

Using Theorem 2.5, Theorem 2.6 above, we have that

$$
\tau_{1}=\operatorname{Ind}_{F^{\times} \ltimes U_{A}}^{H_{A}}\left(\widetilde{\psi_{1}} \otimes \overline{\operatorname{reg}\left(F^{\times}\right)}\right)
$$

is a representation of H_{A}, where

$$
\widetilde{\psi_{1}}(a u)=\psi_{1}(u)
$$

and

$$
\left.\overline{\operatorname{reg}\left(F^{\times}\right.}\right)(a u)=\operatorname{reg}\left(F^{\times}\right)(a)
$$

(reg is the regular representation of F^{\times}).
Lemma 6.1. Let $\eta \in \widehat{F^{\times}}$. Then,

$$
\operatorname{dim}_{\mathbb{C}} \operatorname{Hom}_{H_{A}}\left(\left.\pi_{N, \psi_{A}}\right|_{H_{A}}, \operatorname{Ind}_{I_{1}}^{H_{A}}\left(\widetilde{\psi_{1}} \otimes \bar{\eta}\right)\right)=q .
$$

Proof. We have

$$
\begin{aligned}
\left\langle\left.\Theta_{N, \psi_{A}}\right|_{I_{1}}, \chi_{\widetilde{\psi_{1} \otimes \bar{\eta}}}\right\rangle & =\frac{1}{\left|I_{1}\right|} \sum_{k \in I_{1}} \Theta_{N, \psi_{A}}(k)\left(\overline{\left.\chi_{\widetilde{\psi_{1}} \otimes \bar{\eta}}\right)(k)}\right. \\
& =\frac{1}{\left|I_{1}\right|}\left[\sum_{k \in I_{1} \backslash U_{A}} \Theta_{N, \psi_{A}}(k)\left(\overline{\left.\chi_{\widetilde{\psi_{1}} \otimes \bar{\eta}}\right)(k)}+\sum_{k \in U_{A}} \Theta_{N, \psi_{A}}(k) \overline{\psi_{1}(k)} \overline{\eta(1)}\right]\right. \\
& =\frac{1}{\left|I_{1}\right|}\left[0+\sum_{k \in U_{A}} \Theta_{N, \psi_{A}}(k) \overline{\psi_{1}(k)}\right] \\
& =\frac{1}{\left|I_{1}\right|}\left(K_{1}+K_{2}+K_{3}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
K_{1} & =\sum_{\substack{k \in U_{A} ; \\
X \neq 0, Y=0}} \Theta_{N, \psi_{A}}(k) \overline{\psi_{1}(k)}+\sum_{\substack{k \in U_{A} ; \\
Y \neq 0, X=0}} \Theta_{N, \psi_{A}}(k) \overline{\psi_{1}(k)}, \\
K_{2} & =\sum_{\substack{k \in U_{A} ; \\
X, Y \neq 0}} \Theta_{N, \psi_{A}}(k) \overline{\psi_{1}(k)} \text { and } K_{3}=\Theta_{N, \psi_{A}}(1) \overline{\psi_{1}(1)} .
\end{aligned}
$$

Clearly,

$$
K_{3}=\left(q^{2}-1\right)^{2}\left(q^{2}-q\right)
$$

To compute K_{1}, it is enough to show that

$$
\begin{equation*}
\sum_{\substack{k \in U_{A} ; \\ X \neq 0, Y=0}} \overline{\psi_{1}(k)}=-1 . \tag{6.1}
\end{equation*}
$$

Indeed, we have

$$
\begin{aligned}
\sum_{\substack{k \in U_{A} ; \\
X \neq 0, Y=0}} \overline{\psi_{1}(k)} & =\sum_{x=0, y \neq 0} \overline{\psi_{0}(0)}+\sum_{x \neq 0, y \in F} \overline{\psi_{0}(x)} \\
& =(q-1)+q(-1) \\
& =-1 .
\end{aligned}
$$

Similarly, we have

$$
\begin{equation*}
\sum_{\substack{k \in U_{A} ; \\ Y \neq 0, X=0}} \overline{\psi_{1}(k)}=-1 . \tag{6.2}
\end{equation*}
$$

From Equations 6.1 and 6.2 and row 5 of Table 5, it follows that

$$
\begin{aligned}
K_{1} & =-\left(q^{2}-1\right)\left(q^{2}-q\right)\left[\sum_{\substack{k \in U_{A} ; \\
X \neq 0, Y=0}} \overline{\psi_{1}(k)}+\sum_{\substack{k \in U_{A} ; \\
Y \neq 0, X=0}} \overline{\psi_{1}(k)}\right] \\
& =2\left(q^{2}-1\right)\left(q^{2}-q\right) .
\end{aligned}
$$

To compute K_{2}, we need

$$
\sum_{\substack{k \in U_{A} ; \\ X, Y \neq 0}} \overline{\psi_{1}(k)}=\sum_{X, Y \neq 0} \overline{\psi_{0}(x+v)}=A+B,
$$

where

$$
\begin{aligned}
A & =\sum_{\substack{X, Y \neq 0 ; \\
x+v=0}} \overline{\psi_{0}(0)} \\
& =\sum_{\substack{x, v=0 \\
y, u \neq 0}} \overline{\psi_{0}(0)}+\sum_{\substack{x \neq 0, v=-x \\
y, u \in F}} \overline{\psi_{0}(0)} \\
& =(q-1)\left(q^{2}+q-1\right)
\end{aligned}
$$

and

$$
\begin{aligned}
B & =\sum_{\alpha \in F^{\times}} \sum_{\substack{X, Y \neq 0 ; \\
x+v=\alpha}} \overline{\psi_{0}(\alpha)} \\
& =\sum_{\substack{\alpha \in F^{\times}}}\left[\sum_{\substack{x=0, v=\alpha \\
y \neq 0, u \in F}} \overline{\psi_{0}(\alpha)}+\sum_{\substack{v=0, x=\alpha \\
u \neq 0, y \in F}} \overline{\psi_{0}(\alpha)}+\sum_{\substack{x \neq 0, x \neq \alpha, v=\alpha-x, y, u \in F}} \overline{\psi_{0}(\alpha)}\right] \\
& =\sum_{\alpha \in F^{\times}} \overline{\psi_{0}(\alpha)}\left[2(q-1) q+(q-2) q^{2}\right] \\
& =-\left(q^{3}-2 q\right)
\end{aligned}
$$

Thus, we have

$$
\begin{equation*}
\sum_{\substack{k \in U_{A} ; \\ X, Y \neq 0}} \overline{\psi_{1}(k)}=1 . \tag{6.3}
\end{equation*}
$$

From Equation 6.3 and row 6 of Table 5, it follows that

$$
K_{2}=\left(q^{2}-q\right) .
$$

Hence,

$$
\begin{aligned}
\left\langle\left.\Theta_{N, \psi_{A}}\right|_{I_{1}}, \chi_{\widetilde{\psi_{1} \otimes \bar{\eta}}}\right\rangle & =\frac{1}{\left|I_{1}\right|}\left(K_{1}+K_{2}+K_{3}\right) \\
& =\frac{1}{(q-1) q^{4}}\left(K_{1}+K_{2}+K_{3}\right) \\
& =\frac{1}{(q-1) q^{4}}\left(q^{2}-q\right) q^{4} \\
& =q
\end{aligned}
$$

Using Frobenius reciprocity, we have

$$
\operatorname{dim}_{\mathbb{C}} \operatorname{Hom}_{H_{A}}\left(\left.\pi_{N, \psi_{A}}\right|_{H_{A}}, \operatorname{Ind}_{I_{1}}^{H_{A}}\left(\widetilde{\psi_{1}} \otimes \bar{\eta}\right)\right)=q .
$$

7. The Representation τ_{2}

Let ψ_{2} be the character of U_{A} given by

$$
\psi_{2}\left(\left[\begin{array}{cccc}
1 & X & & \\
0 & I & & \\
& & I & Y \\
& & 0 & 1
\end{array}\right]\right)=\psi_{0}(x+u)
$$

where $X^{T}=\left[\begin{array}{l}x \\ y\end{array}\right]$ and $Y=\left[\begin{array}{l}u \\ v\end{array}\right]$. The inertia subgroup of ψ_{2} in H_{A} is given by

$$
\begin{aligned}
I_{2}=I_{H_{A}}\left(\psi_{2}\right) & =\left\{h \in H_{A} \mid{ }^{h} \psi_{2} \simeq \psi_{2}\right\} \\
& =\left\{h \in H_{A} \mid \psi_{2}\left(h^{-1} u h\right)=\psi_{2}(u), \quad \forall u \in U_{A}\right\} \\
& =U_{A} \rtimes \operatorname{Mir},
\end{aligned}
$$

where Mir is the mirabolic subgroup of GL(2). To be precise, we have

$$
I_{2}=I_{H_{A}}\left(\psi_{2}\right)=\left\{\left.\left[\begin{array}{cccccc}
a & x & y & & & \\
0 & a & r & & & \\
0 & 0 & 1 & & & \\
& & & 1 & 0 & \\
& & & r & a & v \\
& & & 0 & 0 & 1
\end{array}\right] \right\rvert\, a \in F^{\times}, r, x, y, u, v \in F\right\}
$$

Using Theorem 2.5, we have that

$$
\tau_{2}=\operatorname{Ind}_{U_{A} \rtimes M i r}^{H_{A}}\left(\widetilde{\psi_{2}} \otimes \overline{\operatorname{reg}(\text { Mir })}\right)
$$

is a representation of H_{A}, where

$$
\widetilde{\psi_{2}}(g u)=\psi_{2}(u)
$$

and

$$
\overline{\operatorname{reg}(\operatorname{Mir})}(g u)=\operatorname{reg}(\operatorname{Mir})(g), \quad \forall g \in \operatorname{Mir}, u \in U_{A} .
$$

(here reg is the regular representation of Mir).
Let ρ be the unique irreducible representation of Mir of degree $q-1$. To compute the multiplicity of τ_{2} in $\pi_{N,\left.\psi_{A}\right|_{H_{A}}}$, we have to find the multiplicity of $\widetilde{\psi_{2}} \otimes \bar{\rho}$ and $\widetilde{\psi_{2}} \otimes \bar{\eta}$ for each $\eta \in \widehat{F^{\times}}$inside the restriction of $\pi_{N, \psi_{A}}$ to I_{2}. We record it in the following lemmas.

Lemma 7.1. We have

$$
\operatorname{dim}_{\mathbb{C}} \operatorname{Hom}_{I_{2}}\left(\left.\pi_{N, \psi_{A}}\right|_{I_{2}}, \widetilde{\psi_{2}} \otimes \bar{\rho}\right)=q-1
$$

Proof. We have

$$
\begin{aligned}
\left\langle\left.\Theta_{N, \psi_{A}}\right|_{I_{2}}, \chi_{\widetilde{\psi_{2} \otimes \bar{\rho}}}\right\rangle & =\frac{1}{\left|I_{2}\right|} \sum_{k \in I_{2}} \Theta_{N, \psi_{A}}(k)\left(\overline{\left.\chi_{\widetilde{\psi_{2}} \otimes \bar{\rho}}\right)(k)}\right. \\
& =\frac{1}{\left|I_{2}\right|}\left[\sum_{k \in I_{2} \backslash U_{A}} \Theta_{N, \psi_{A}}(k)\left(\overline{\chi_{\widetilde{\psi_{2}} \otimes \bar{\rho}}}\right)(k)\right. \\
& \left.\sum_{k \in U_{A}} \Theta_{N, \psi_{A}}(k) \overline{\psi_{2}(k) \chi_{\rho}(1)}\right] \\
& =\frac{1}{\left|I_{2}\right|}\left[0+(q-1) \sum_{k \in U_{A}} \Theta_{N, \psi_{A}}(k) \overline{\psi_{2}(k)}\right] \\
& =\frac{(q-1)}{\left|I_{2}\right|}\left(C_{1}+C_{2}+C_{3}\right),
\end{aligned}
$$

where

$$
\begin{aligned}
& C_{1}=\sum_{\substack{k \in U_{A} ; \\
X \neq 0, Y=0}} \Theta_{N, \psi_{A}}(k) \overline{\psi_{2}(k)}+\sum_{\substack{k \in U_{A} ; \\
Y \neq 0, X=0}} \Theta_{N, \psi_{A}}(k) \overline{\psi_{2}(k)}, \\
& C_{2}=\sum_{\substack{k \in U_{A} ; \\
X, Y \neq 0}} \Theta_{N, \psi_{A}}(k) \overline{\psi_{2}(k)} \text { and } C_{3}=\Theta_{N, \psi_{A}}(1) \overline{\psi_{2}(1)}
\end{aligned}
$$

Clearly,

$$
C_{3}=\left(q^{2}-1\right)^{2}\left(q^{2}-q\right) .
$$

To compute C_{1}, it is enough to show that

$$
\begin{equation*}
\sum_{\substack{k \in U_{A} ; \\ X \neq 0, Y=0}} \overline{\psi_{2}(k)}=-1 . \tag{7.1}
\end{equation*}
$$

Indeed, we have

$$
\begin{aligned}
\sum_{\substack{k \in U_{A} ; \\
x \neq 0, Y=0}} \overline{\psi_{2}(k)} & =\sum_{x=0, y \neq 0} \overline{\psi_{0}(0)}+\sum_{x \neq 0, y \in F} \overline{\psi_{0}(x)} \\
& =(q-1)+q(-1) \\
& =-1
\end{aligned}
$$

Similarly, we have

$$
\begin{equation*}
\sum_{\substack{k \in U_{A} ; \\ Y \neq 0, X=0}} \overline{\psi_{2}(k)}=-1 . \tag{7.2}
\end{equation*}
$$

From Equations 7.1 and 7.2 and row 5 of Table 5, it follows that

$$
\begin{aligned}
C_{1} & =-\left(q^{2}-1\right)\left(q^{2}-q\right)\left[\sum_{\substack{k \in U_{A} ; \\
X \neq 0, Y=0}} \overline{\psi_{2}(k)}+\sum_{\substack{k \in U_{A} ; \\
Y \neq 0, X=0}} \overline{\psi_{2}(k)}\right] \\
& =2\left(q^{2}-1\right)\left(q^{2}-q\right)
\end{aligned}
$$

To compute C_{2}, we need

$$
\sum_{\substack{k \in U_{A} ; \\ X, Y \neq 0}} \overline{\psi_{2}(k)}=\sum_{X, Y \neq 0} \overline{\psi_{0}(x+u)}=A+B,
$$

where

$$
\begin{aligned}
A & =\sum_{\substack{X, Y \neq 0 ; \\
x+u=0}} \overline{\psi_{0}(0)} \\
& =\sum_{\substack{x, u=0 \\
y, v \neq 0}} \overline{\psi_{0}(0)}+\sum_{\substack{x \neq 0, u=-x \\
y, v \in F}} \overline{\psi_{0}(0)} \\
& =(q-1)\left(q^{2}+q-1\right)
\end{aligned}
$$

and

$$
\begin{aligned}
B & =\sum_{\alpha \in F^{\times}} \sum_{\substack{x, Y \neq 0 ; \\
x+u=\alpha}} \overline{\psi_{0}(\alpha)} \\
& =\sum_{\substack{\alpha \in F^{\times} \times}}\left[\sum_{\substack{x=0, u=\alpha \\
y \neq 0, v \in F}} \overline{\psi_{0}(\alpha)}+\sum_{\substack{u=0, x=\alpha \\
v \neq 0, y \in F}} \overline{\psi_{0}(\alpha)}+\sum_{\substack{x \neq 0, x \neq \alpha, u=\alpha-x, y, v \in F}} \overline{\psi_{0}(\alpha)}\right] \\
& =\sum_{\alpha \in F^{\times}} \frac{\psi_{0}(\alpha)}{}\left[2(q-1) q+(q-2) q^{2}\right] \\
& =-\left(q^{3}-2 q\right)
\end{aligned}
$$

Thus, we have

$$
\begin{equation*}
\sum_{\substack{k \in U_{A} ; \\ X, Y \neq 0}} \overline{\psi_{2}(k)}=1 \tag{7.3}
\end{equation*}
$$

From Equation 7.3 and row 6 of Table 5, it follows that

$$
C_{2}=\left(q^{2}-q\right)
$$

Hence,

$$
\begin{aligned}
\left\langle\left.\Theta_{N, \psi_{A}}\right|_{I_{2}}, \chi_{\widetilde{\psi_{2}} \otimes \bar{\rho}}\right\rangle & =\frac{(q-1)}{\left|I_{2}\right|}\left(C_{1}+C_{2}+C_{3}\right) \\
& =\frac{(q-1)}{(q-1) q^{5}}\left(C_{1}+C_{2}+C_{3}\right) \\
& =\frac{1}{q^{5}}\left(q^{2}-q\right) q^{4} \\
& =q-1 .
\end{aligned}
$$

Lemma 7.2. For each $\eta \in \widehat{F^{\times}}$, we have

$$
\operatorname{dim}_{\mathbb{C}} \operatorname{Hom}_{I_{2}}\left(\left.\pi_{N, \psi_{A}}\right|_{I_{2}}, \widetilde{\psi_{2}} \otimes \bar{\eta}\right)=1
$$

Proof. We have

$$
\begin{aligned}
\left\langle\Theta_{N, \psi_{A}} \mid I_{2}, \chi_{\widetilde{\psi_{2}} \otimes \bar{\eta}}\right\rangle & =\frac{1}{\left|I_{2}\right|} \sum_{k \in I_{2}} \Theta_{N, \psi_{A}}(k)\left(\overline{\left.\chi_{\widetilde{\psi_{2}} \otimes \bar{\eta}}\right)(k)}\right. \\
& =\frac{1}{\left|I_{2}\right|}\left[\sum_{k \in I_{2} \backslash U_{A}} \Theta_{N, \psi_{A}}(k)\left(\overline{\left.\chi_{\widetilde{\psi_{2}} \otimes \bar{\eta}}\right)(k)}+\sum_{k \in U_{A}} \Theta_{N, \psi_{A}}(k) \overline{\psi_{2}(k)} \cdot \overline{\eta(1)}\right]\right. \\
& =\frac{1}{\left|I_{2}\right|}\left[0+\sum_{k \in U_{A}} \Theta_{N, \psi_{A}}(k) \overline{\psi_{2}(k)}\right] \\
& =\frac{1}{\left|I_{2}\right|}\left(C_{1}+C_{2}+C_{3}\right) .
\end{aligned}
$$

Proceeding as in Lemma 7.1, we have that

$$
\begin{aligned}
\left\langle\left.\Theta_{N, \psi_{A}}\right|_{I_{2}}, \chi_{\widetilde{\psi_{2}} \otimes \bar{\eta}}\right\rangle & =\frac{1}{\left|I_{2}\right|}\left(C_{1}+C_{2}+C_{3}\right) \\
& =\frac{1}{(q-1) q^{5}}\left(C_{1}+C_{2}+C_{3}\right) \\
& =\frac{1}{(q-1) q^{5}}\left(q^{2}-q\right) q^{4} \\
& =1
\end{aligned}
$$

8. Main Theorem

In this section, we prove the main result of this paper. We continue with the notation of the previous sections. For $1 \leq i \leq q-1$, we let

$$
\sigma_{i}=\operatorname{Ind}_{I_{1}}^{H_{A}}\left(\widetilde{\psi_{1}} \otimes \overline{\eta_{i}}\right) \quad \text { and } \quad \phi_{i}=\operatorname{Ind}_{I_{2}}^{H_{A}}\left(\widetilde{\psi_{2}} \otimes \overline{\eta_{i}}\right)
$$

where η_{i} 's are the distinct characters of F^{\times}. Thus we have

$$
\begin{aligned}
\tau_{1} & =\operatorname{Ind}_{U_{A} \rtimes F^{\times}}^{H_{A}}\left(\widetilde{\psi_{1}} \otimes \overline{\operatorname{reg}\left(F^{\times}\right)}\right) \\
& =\bigoplus_{i=1}^{q-1} \sigma_{i}
\end{aligned}
$$

and

$$
\begin{aligned}
\tau_{2} & =\operatorname{Ind}_{U_{A} \rtimes M i r}^{H_{A}}\left(\widetilde{\psi_{2}} \otimes \overline{\operatorname{reg}(M i r)}\right) \\
& =(q-1) \operatorname{Ind}_{I_{2}}^{H_{A}}\left(\widetilde{\psi_{2}} \otimes \bar{\rho}\right) \oplus \bigoplus_{i=1}^{q-1} \phi_{i} .
\end{aligned}
$$

Theorem 8.1. Let θ be a regular character of $F_{6}{ }^{\times}$and $\pi=\pi_{\theta}$ be an irreducible cuspidal representation of $\mathrm{GL}(6, F)$. Then,

$$
\left.\pi_{N, \psi_{A}} \simeq \theta\right|_{F^{\times}} \otimes\left(q \tau_{1} \oplus \tau_{2}\right)
$$

as $M_{\psi_{A}}$ modules.
Proof. Using Lemma 6.1, 7.1 and 7.2, we have

$$
\left.\pi_{N, \psi_{A}}\right|_{H_{A}}=q \bigoplus_{i=1}^{q-1} \sigma_{i} \oplus(q-1) \operatorname{Ind}_{I_{2}}^{H_{A}}\left(\widetilde{\psi_{2}} \otimes \bar{\rho}\right) \oplus \bigoplus_{i=1}^{q-1} \phi_{i}
$$

Since $\left.\theta\right|_{F \times}$ is the central character of π, it follows that

$$
\left.\pi_{N, \psi_{A}} \simeq \theta\right|_{F^{\times}} \otimes\left(q \tau_{1} \oplus \tau_{2}\right)
$$

References

1. Kumar Balasubramanian, Abhishek Dangodara, and Himanshi Khurana, On a twisted jacquet module of GL(2n) over a finite field, 2022.
2. Kumar Balasubramanian and Himanshi Khurana, On a twisted jacquet module of GL(6) over a finite field, 2022.
3. T. Ceccherini-Silberstein, F. Scarabotti, and F. Tolli, Clifford theory and applications, vol. 156, 2009, Functional analysis, pp. 29-43. MR 2760311
4. S. I. Gelfand, Representations of the full linear group over a finite field, Mat. Sb. (N.S.) 83 (125) (1970), 15-41. MR 0272916
5. Dipendra Prasad, The space of degenerate whittaker models for general linear groups over a finite field, Internat. Math. Res. Notices (2000), no. 11, 579-595. MR 1763857

Kumar Balasubramanian, Department of Mathematics, IISER Bhopal, Bhopal, Madhya Pradesh 462066, India

Email address: bkumar@iiserb.ac.in
Himanshi Khurana, Department of Mathematics, IISER Bhopal, Bhopal, Madhya Pradesh 462066, India

Email address: himanshi18@iiserb.ac.in

